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Matrix composite materi~ds consisting of a uniform component (the matrix), in which a large number of particles of filler 
(inclusions) are uniformb' distributed, are considered. It is assumed that the components of these materials are ideally elastic 
and possess piezoelectric l~roperties. One version of the self-consistent method (the effective-field method) is used to determine 
the effective electric and ~;lastic characteristics of these materials, taking related electroelastic effects into account. As the first 
stage of the method, the problem of coupled electroelasticity for a homogeneous medium containing an isolated inhomogeneity 
is solved. The solution of this problem is found in analytic form for an ellipsoidal inclusion and a constant external field. The 
solution obtained is then used in a self-consistent scheme to construct an effective electroelastic operator of the composite, 
containing a random set of ellipsoidal inclusions. Explicit expressions are obtained for the electroelastic characteristics of 
composites, reinforced with spherical inclusions and continuous cylindrical fibres. © 1996 Elsevier Science Ltd. All rights reserved. 

A systematic investigation of the electroelastic properties of different kinds of piezoactive composites 
using the conditional-averaging method can be found in a number of papers published by scientists of 
the  Kiev  School  (see [1], w h e r e  re fe rence  to  or ig inal  p a p e r s  a re  given). T h e  a p p r o a c h  p r o p o s e d  in the  
p r e s en t  p a p e r  enab les  the  de t a i l ed  mic ros t ruc tu re  and  in te rac t ion  be tween  the  inclusions to  be  t aken  
into  account  m o r e  o3mplete ly .  

1. Consider a unifiarm elastic piezoelectric material under isothermal conditions. The linear governing 
relations for such a :material, which can be obtained by analysing the thermodynamic potentials (see, 
for example, [1--4]), have the form 

! 
- e~tL~:kl + ._~ik/~'k ~ij  = Cqtt~'tt - eijt~Et, ~ Di _ t . (1.1) 

H e r e  c~ and  e a re  the  s tress  and  s t ra in  tensors ,  E and  D are  the  electr ic-f ie ld and  induct ion  vectors ,  
respect ively,  C = C t: is the  e las t i c -modul i  t en so r  for  a fixed E vector ,  I] = [ 3e is the  permi t t iv i ty  tensor ,  
e is the  p iezoe lec t r i c -cons tan t  tensor ,  which charac te r izes  the  r e l a t ed  e lec t roe las t i c  effects,  and  the  
supersc r ip t  t d eno t e s  the  t r anspos i t ion  ope ra t i on .  

Re la t ions  (1.1) can  be  convenien t ly  wr i t t en  in the  fol lowing shor t  fo rm 

! °u I c 1 it'll J = L F ,  J =  I . D  , L =  et F =  
a n  [3 ' E 

(1.2) 

where the "matrix" L must be regarded as a linear operator which converts the tensor-vector pair [o, 
D] into the analogous pair [e, D] and which has symmetry of the electroelastic constants. 

The relations inw'rse to (1.1), can be written in the form 

II s F = M J ,  M =  _ d t ri 

S = S ° = ( C  + e~ - I e t )  - I ,  q = rl ° = (6  + e ' C - l e )  -I 

d = S e ~  -1 = C- l e r i  

(1.3) 
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Since the basis of the effective-field method is the solution of the single-particle problem, we will 
first consider an unbounded piezoactive medium with electroelastic characteristics L °, containing a closed 
region Vwith a different electroelastic properties L. We will start from the following combined system 
of equations of the theory of elasticity and electrical conductivity for a medium with an inhomogeneity 

u i ( x ) 
VLVf(x )  = O, f ( x )  = -dp(x) 

L(x) = L ° + Lt(x), Ll(x) = L[V(x), L I = L - L  °, V,=O/Oxi 

(1.4) 

where Ui(X ) are  the components of the displacement vector, t~(x) is the electric potential at an arbitrary 
point x and V(x) is the characteristic function of the region V. For our further consideration it will 
be more convenient to reduce the problem of determining the fields ui(x) and ()(x) to a system of 
integral equations, equivalent to the initial system of differential equations (1.4). This system has the 
form 

F(x )=F°(x )+S  P(x-x ' )LIF(x ' )dx  ", x ~ V  
v 

.5) 
P(x)=DG(x)D,  O=ll ~ef0 grad0 II 

Here F°(x) are the external elastic and electric fields which would arise in the main medium if there 
was no inhomogeneity and for specified conditions at infinity and G(x) is Green's function of the 
combined system of equations of the theory of elasticity and electrical conductivity. For arbitrary 
anisotropy of the main medium this function is given by the expressions 

[ Gii(~> Fi(~)[ 
G(x)=~'l_2 I G(~)8(~ox)dS~ G(~)= -Ti(~)  g(~) (1.6) 

8 g  I~J=l 

Gij = A i i  - -~ Hih i = hiGii, 

r i = AJHig,- A#(~)  = C~l~il~k~!o , Hi(~  ) = eikt~t.~to 

When x E V the system of equations (1.5) defines the fields e(x) and E(x) inside the inclusion, from 
which the field outside Vcan be established uniquely. 

We will now assume that the inclusion has the form of an ellipsoid with semiaxes al, a2 and a3, which 
are specified by the relation xi(a-2)iffj <-<- 1, aij = aiSij (there is no summation over i!). It can be 
shown that the integral operator with kernel P(x) for an ellipsoidal region possesses the property 
of "polynomial conservatism" [5]. In particular, suppose the external fields are uniform in the region 
V (F ~ = const), and that this region itself is a sphere of radius a. If F = const, the problem reduces 
to evaluating the integral 

02 

v X-opf 
8( p - ~x')dx' (1.7) 

V 

p = ~ . x ,  P(~)=~G(~)~ 

The integral over the region V is equal to the area of the circle which is formed by the section of a 
sphere by the plane ~ • x = p, i.e. ~2(a2 _p2), if IP [ ~< a and zero ifp > a. Whenx e Vthe second 
derivative of this integral is equal to -2~ and the right-hand side in (1.7) is constant. 

A similar result is also obtained for an ellipsoid which is converted into the unit sphere using the 
coordinate transformation t i = aolxj. In this case 

S P(x - x')dx" = - P  = const (1.8) 
v 
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Idetal f pt~:~ dS~ 
4~ IJ=l "~'p3(~)' P(~)=v~, ' -  )O~i '~~a2 P =  

Thus, for an external field F°(x), uniform in the region V, the integral equation (1.5) is converted 
into the algebraic equation 

F = t7o _ PL~F (1.9) 

Solving this equation for F, we can express the strain field e and the electric field strength E in 
terms of the external field ~0 and E ° 

F = A F  °, A = ( I + P L I )  -I (1.10) 

i 11,., 011 0 g~k ' liJkl = 5"kSt).i 

2. We will now consider an unbounded elastic piezoelectric medium containing a random set of 
ellipsoidal inclusions, uniformly distributed in space, which occupy a system of isolated regions Vk with 
characteristic functions Vk(X), k = 1, 2 , . . . .  The system of equations for determining the strain fields 
e(x) and the electric field strength E(x) in a medium with inhomogeneities has the following form, similar 
to (1.5) 

F(x) = F°(x) + ~P(x - x')Lt(x')V(x')F(x')dx ' (2.1) 

Here V(x) is the characteristic function of the region V = ZkVk, occupied by the inclusions, and Ll(x) 
is a function which is identical with the constant quantity L(tok) whenx ~ Vk (Ok is the set of geometrical 
parameters characterizing the orientation of the principal anisotropy axes of the kth inclusion). 

To solve the problem of homogenization and to construct a macroscopic system of equations of the 
theory of coupled ela-~ticity and electrical conductivity using the system of equations (2.1), we will employ 
the self-consistent scheme [6--8], the basic principle of which is as follows. We fix one of the typical 
samples of a random set of inclusions and we consider an arbitrary kth inclusion occupying a volume 
Vk. For this inclusion we introduce a local external field E~k (x) This field is defined in Vk and is made 

. . . . . 

up of the external field F°(x) and the perturbation fields o~)all the remaining inclusions. 
We now introduce the field F*(x), which is identical with F~k)(X) when x ~ Vk, and the function V(x; 

x'), defined as follows: 

V ( x ; x ' ) =  • Vi(x'), x ~ V k (2.2) 
i~k 

This enables us to write, for an arbitrary point x in the region V 

F*(x) = F°(x) + jP(x -x')LJ(x')V(x; x')F(x')ch" (2.3) 

We will assume that the field F*(x) has the same structure in any of the regions occupied by the 
inclusions (hypothesis/-/1 of the effective-field method). In particular, if we assume that this field is 
constant in each of the regions Vk but may be different for different inclusions), the field F(x) (x ~ V) 
is related to the local external field F*(x) by the relation obtained above when solving the single-particle 
problem for an ellip,~idal inhomogeneity 

F(x) = A(x)F*(x) (2.4) 

HereA(x) is a function which, whenx ~ Vk, is identical with the constant operator A(COk) defined by 
(1.10). 

Substituting (2.4) into the right-hand sides of Eqs (2.1) and (2.3) we can express the electroelastic 
fields at an arbitrary point of the medium in terms of the local external field 

F(x) = F*(x) + ~P(x - x')L l(x')A(x')F*(x')V(x')dx" (2.5) 
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and also obtain a self-consistent equation for determining this field 

F*(x) = F°(x) + ~P(x - x')Lt(x')A(x')F*(x')V(x; :g)dx' (2.6) 

If the set of inclusions is random, F(x) and F*(x) are random functions. Averaging both sides of Eq. 
(2.5) over the ensemble of realizations of the random set of inclusions we can write 

(F(x)) = F°(x) + ~P(x- x')(Li(a:)A(x')F*(x')V(x')l.~:)d -x" (2.7) 

We have denoted the ensemble mean by the symbol (-Ix') provided that the point x' is in the region 
V occupied by the inclusions. 

We will now assume that the value of the random function F*(x) at points of the region V/is statistically 
independent of the properties of the inclusion and of the geometrical characteristics of this region 
(hypothesis//2 of the effective-field method). This enables us to represent the mean in the integrand 
in (2.7) in the form of the following product 

(Ll(x)A(x)F*(x)V(x)lx) = (L~(x)A(x)V(x)XF'(x)lx) (2.8) 

For a spatially homogeneous set of inclusions LX(x) and A(x) are homogeneous random functions 
possessing ergodie properties. Using this property we obtain 

(Lt(x)A(x)V(x)) = I I 0 ( I ) L A ) ,  L a = LIA (2.9) 

Here n o is the number density of the inclusions and v is the volume of a typieal inclusion, while 
averaging on the right-hand side of (2.9) is assumed over the random dimensions and orientations of 
the ellipsoidal inhomogeneities. 

The quantity (F*(x) Ix) is the ensemble average provided that the point x is in region V. This average 
will henceforth be called the effective field. 

Taking (2.8) and (2.9) into account, Eq. (2.7) can be written in the form 

(F(x)) = F°(x) + nJP(x - x')(uLA)F'(x')dJt " (2.10) 

Hence it follows that the mean field (F(x)) at an arbitrary point x of the composite material can be 
expressed in terms of the effective field F'(x). Equation (2.6) is the starting equation for determining 
it. Averaging both sides of this equation with the condition x ~ V, we can write 

F'(x) = F°(x) + ~P(x- x')(L I (x')A(x')F*(x')V(x; x')lx')dx' (2.11) 

Hypothesis H2 enables us to represent the mean in the integrand in this expression as follows: 

(Ll(x')A(x')F*(x')VO, x')lx') = (Ll(x')A(x')V(x; x')lx')(F*(x')lx'; x) (2.12) 

The symbol (. Ix'; x) denotes the operation of averaging with the condition x, x' ~ V. In general, the 
mean I" Ix'; x) differs from (-Ix) 

Assuming that the properties of the inclusions are statistically independent of their position in space, 
the first factor on the right-hand side of (2.12) can be represented in the form 

(L~(x')A(x')V(x; x')lx') = no(vLA)~(x, x') (2.13) 

V(x, x') = (V(x: x')lx)/(V(x)) 

For a spatially homogeneous set of inclusions the function W(x, x') depends only on the difference 
of the arguments W(x, x') = ~F(x - x'). This function represents the distribution density of the inhomo- 
geneities surrounding a typical inclusion, the centre of which is situated at the origin of coordinates. 
Sometimes we say that this function determines the form of the "correlation well", in which a typical 
inclusion in the composite is situated. 

Equation (2.11) takes the form 

F'(x) = F°(x) + no~P(x - X " ) ( u L A ) ~ I I ( A  " - -  x')(F'(x')lx': x)dx" (2.14) 
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As already noted, the conditional average in the integrand in this expression differs from F' ( x ) .  We 
can obtain an expression for this mean once again using Eq. (2.6), averaging both sides with the condition 
x, X" ~ V. But then its right-hand side turns out to depend on a more complex conditional average. 
Repetition of this procedure leads to an infinite chain of related statistical equations in the conditional 
means of increasingly complex structure. Hence, the problem of closure arises, as it usually does in 
problems of this kind, which can only be solved approximately. In particular, we can close this chain 
at the first step by using the so-called "quasicrystalline approximation", proposed by Lax [9], by virtue 
of which the means (. Ix'; x) and (. Ix) are identical. As a result we obtain 

F' (x )  = F°(x)  + n J P ( x  - x ' ) ( v L A ) W ( x  - x ' )F ' (x ' )dx '  (2.15) 

Eliminating the erlernal field F°(x) from (2.10) and (2.15), we arrive at an equation which relates 
the effective field F'(Jc) to the mean field (F(x)) in the composite 

F' (x )  = (F(x) )  - no~P(x - x ' ) ~ ( x  - x')(vLA)F'(x')~Lr" 

• (x)  = I - Ue(x) 

(2.16) 

If the set of inclusions possesses a certain symmetry (in the statistical sense), this affects the symmetry 
of the function ~(x). In particular, if the set of inclusions is isotropic, this function will be spherically 
symmetrical, i.e. ~(x) = ~(I x I). 

Disturbance of the isotropy of the random set of inclusions may lead to the occurrence of a texture. 
We mean by texture here the difference in the symmetry of the tensors of the electroelastic characteristics 
of an inhomogeneous medium. In many important practical cases the symmetry of the texture can be 
described using a biv:flent tensor bij, which defines the linear transformation of the space by which the 
function O(x) is converted into a spherically symmetric function 

• (b. x) = O(Ixl) (2.17) 

Here the ellipsoid spedfied by the equation (b- x) 2 = 1 will characterize the form of the correlation 
well. In general, of cx,urse, one cannot choose such a transformation. 

For a random set of inclusions ~(x) is a smooth function which rapidly approaches zero outside a 
region with dimensions of the order of the correlation well. If we neglect the change in the field ~F* (x) I x) 
in this region, Eq. (2.16) is converted into an algebraic equation 

F'(x) = (F(x)) -. noll(uLa)F'(x), ll = jP(x)~(x)d~ (2.18) 

Solving this equation for F'(x) and substituting the result into the right-hand side of (2.10), we obtain 

(F(x) )  = F°(x )  + n d P ( x  - x')(vLa)D°(F(x'))dx" (2.19) 

D o = (/+ n0II(vLA)) -I 

Acting on both sides of this equation with the operator VL ° and taking into account the relation 

VL°F°(x) = 0, VL°VG(x) = -IS(x) 

we obtain that the mean elastic and electric fields in the composite material satisfy the equation 

VL*(F(x)) '= 0, L* = L ° + no(vLA)D 0 (2.20) 

which is identical in form with the equation of equilibrium of the theory of coupled electroelasticity 
for a certain homogeneous medium, the reaction of which to an external force is identical on average 
(maeroseopically) wilth the reaction of a microinhomogeneous material. The quantity L* in (2.20) is 
the operator of effective electroelastic characteristics of the piezoactive composite material. 

3. We will consider some special cases. 
The matrix in the composite material is isotropic but the inclusions are spheres of the same radius. 

In this case the operator P in (1.8) takes the form 
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P:[I Oil 0 Pik 

Pqkt = 9k-~ Ebk' + ~ t''~t'' E?ik' = 8ii8~:t' E~2` = l'it` - -  ~ k l  

I 
k o + 4 ~ t  o, [ t p -  p ~ / = ~ o S i J ,  kp = 5kt°(3k° +4It°) 

.'~ 6(k 0 + 21.t 0) 

(3.1) 

where k0 and Ix0 are the bulk and shear moduli of the matrix. 
We will assume that the electroelastic properties of the spherical inclusions are characterized by the 

cubic system of  classes 213m and 23. In this case the tensors C, e and 13 can be represented in the form 

C = kE t + 2[tE 2 + 2(m - la)E 3 

3 1 I 
E~t, = ~, O~i,.O~.irOCk,.O~ h. - 5 E;it' 

r=l 

13ij = IBS~j, e = e U  

U~j k = O[ilG~ j20~k3 + Gti20t jll~k3 + O~i30~jlO~k2 + O~il(3t j313tk2 + 13ti20[j30~kl + O~i3(Xj20~kl 
(3.2) 

where Oqr is the conversion matrix from the crystal system of coordinates to the laboratory system of 
coordinates. 

We will assume that the inclusions in the composite are distributed uniformly and isotropically in 
the matrix. Then, the correlation well has the form of a sphere and the operator H in (2.18) is identical 
with the operator P defined by (3.1). 

We will now consider two limiting cases. 
1. Suppose the orientation of the principal axes of anisotropy of the inclusions is chaotic. Then, the 

composite as a whole is isotropic (there are no combined electroelastic effects in it) and is characterized 
by two effective elastic moduli k* and ~t*, and also by a permittivity 13". These quantities can be 
represented in the form 

( } P 1 , 5 p (3.3) 
P la = I.t o + p 2ma + 3t.ta t'te k* = k o + kp 

( )' I p 
1~* = 1~o + P ~A 3~0 

where 

( T kA=k, f l+ kl ] -I, I-tA =1"1'" ] +  ' him =ml I+m' (3.4) 

[~a =[~' 1+3~0)  " = ~ 1 + ~ 1 + 3 ~ 0 '  =[~1 + ~ 1  +~P 

p = n0~ is the volume density of the inclusions and kl, ~1 . . .  here and henceforth denotes the difference 
between the corresponding characteristics of the inclusions and  the matrix. 

If the material of the inclusions is isotropic (i.e. e = 0, m = I~), formulae (3.3) reduce to the well- 
known expressions for the electroelastic constants of a composite containing a random set of isotropic 
spherical inclusions [6--8]. 

2. We will assume that the principal anisotropy axes of the inclusions are similarly oriented. In this 
case the composite as a whole possesses cubic symmetry of the same class as the inclusion. Its electro- 
elastic properties are then characterized by the following effective elastic moduli 
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its permittivity is 

k*=k,+p - ( 1 1+1-p -’ 
/$ k, ’ m* = CIO + I’ ,,‘, cLp ( 1 ‘; 1-P -’ 

p* =cLo+p [ 

3P” + (I- P)PI l-p -’ 

3pop, +(I-p)(/.@, +e’)+r 
I 

P’=P0+p 
[ 

-I 

cLB+(I-Phh 1-P 

p,pp +(I - P)(P,Cl, +p2) 

; 

%I 1 

(3.5) 

(3.6) 

and its piezoelastic Iconstant is 

f!‘= 3P~olb4(ib + (1 -P)/.Q(3/.$, + (1 -p)P,) + (I -p)V] (3.7) 

Note that taking the limit asp + 1 formally in these formulae leads to physically non-contradictory 
results: L* = L, although the effective-field hypotheses lose their meaning here. 

A composite whose matrix is transversely isotropic. The tensors Cs, e” and l3’ for such a medium can 
be represented in the form 

Co =koT2 +2nl +/,,(T’ +T”)+4poT” +rroT6 

e = e”U’ + E”U* + e”U’ I 2 3 * p = pl’t’ + @y w-9 

Here ka, ms, 10, b, no are five independent elastic moduli of the transversely isotropic medium, e: , 
e!, ei are three piezoelastic constants and 8:) B; are two permittivities. The quantities T’, Ilk, t’ are the 
elements of the tens’or bases, given by the expressions 

where ltti is the unit vector of the axis of symmetry of the material. 
Suppose the inclusions in the composite have the form of continuous cylinders of the same radius 

similarly oriented parallel to the axis of symmetry of the properties of the matrix (a medium reinforced 
by unidirectional continuous fibres). To determine the operator P in this case we will use the general 
expression (1.8) and assume that the inclusion is a prolate spheroid (a1 = a2 = a, a3 > a). We will change 
i_n (1.8) to a spherical system of coordinates $,f3 with polar axis directed along the axis of the spheroid. 
We make the change cos8 = t. We can then write 

P= $JYfbj P(~,t)~(t.G)c/t 
0 -I 

(3.9) 

If we take the limit ;as 6 + 0 this corresponds to an inclusion in the form of an infinite circular cylinder 
(a fibre) of radius a. 7hking this limit in (3.9) we obtain 
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! 2n 
P = ~ -  J P(0,0)d0 (3.10) 

o 

To calculate the tensors occurring in this operator in explicit form we need to put ~3 = 0 in the tensors 
of P(~) in (1.8) (the vector ~ is then in the plane perpendicular to the fibre axis), substitute the expression 
obtained into (3.10) and evaluate the integrals. 

For a transversely isotropic medium the components of the matrix G(~) in (1.6) when ~ = (~1, ~2, 0), 
have the form 

k,, +±o ,  
GO(~) = - mo(ko + mo mo ~o 

I 4 g=-G. 

( e0'22/ • =~0 ( e ° )  2 
. ~ = . 0 "  90 , ~2 ÷ .,, 

(3.11) 

Substituting (3.11) into (3.10) and integrating over the unit circle, we obtain 

II rl P= - r '  p 

( ½ ) ~ T  5 ' ~ 2  P=/91T2+P2 T I -  T 2 + , r = -  
21a o 4 

(3.12) 

/ 1 k0+2m 0 P = ~ a ,  t2, PI = 
zp 2 4(k0 +mo), P2 = 4m0(k0 +m0) 

If we assume that the correlation well also has the form of a cylinder, parallel to the fibres, the general 
formula (2.20) will take the form 

L" = L ° + pLl[l + (! -p)PLI] -t (3.13) 

Suppose the fibre is also transversely isotropic with the axis of symmetry of the properties coinciding 
with their geometrical axis. The tensors of the electroelastic characteristics for these are defined by the 
same formulae (3.8), in which we must omit the zero subscript on the physical constants. As follows 
from (3.13), the composite as a whole will also be transversely isotropic and will be characterized by 
the following five effective elastic moduli 

k* = ao + pk,d(p) ,  m* = mo + p~,/lC +(~ _ P) m, (*o______+ ~o__Z/~--I 
L 2mo(ko + mo)J 

1"=!0 +plld(p), ~1" =~0+  A~p)[l-tl'l ('~,aP,)f]2~ 2 J 

(1 - p)12d(p)] k 0 + m 0 
n * = n o +  p n! "ko'~"--~o J '  d (P )=ko+mo+( l_p )k !  

A(p) =[i +(! - p)b][l +(l - p ) B ] -  (l - p)2Qq, f = g l ~  +(e~) 2 

_1 132 J 
b - + y e  2 , 

l( 4 ] 

+y4] 2 ~ , ~  
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three piezoelastic o~nstants 

e l = e  °+pe]d(p), e~=e ° + ~ p  [-e'+/( i-p)~] 
A(p)L 2 

e 3 = e 0 + p[e~- (1- p)lleld(p)] 
k--o o j 

and two permittivities 

1~; = 1310 + p i l l  I -~ ( 1 -  p)(e  I )2 d(p) ] 
L ko + m0 J 

13; = ~0 + A ~ p ) [ [ ~  ÷ ( I -  p ) f ]  2- oj 
It can be  seen from these formulae that taking into account the coupling of the elastic and 

electric fields affects only the values of the effective elastic modulus la*, the piezoelastic constants e* 
(i -- 1, 2, 3) and the permittivities 1~, (k = 1, 2). As regards the elastic moduli of the composite k*, m*, 
l*, n*, they are defined by the same formulae [8] as in the case of purely elastic deformation. 
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